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1 Introduction model fits extraordinarily well to the pricing of deriva-
tives (and also other securities such as bonds or credits)

This paper is a short introduction to one of the three ca¥ith definitive maturity dates, the potentially unlimited
nerstones of the theory of portfolio choice and asset prite of stocks may need the infinite horizon setting to be
ing in multiperiod settings under uncertainty, which a€@@mpletely understood.

arbitrage, optimality of the agents’ utilitiesandmarket SO in this paper we pay our attention to the discrete
equilibrium These three notions form the basic codlme models. There are several reasons not to underesti-

straints of asset pricing. The most important unifyingate them. For instance, in practice one measures market

principle is that any of these constraints implies certafifta at isolated points of time, such as daily quotations
“state prices,” meaning positive discount factors, one f8f weekly time series. In addition, numerical simulations
each time and each state. With them the price of any §8ch as Monte Carlo methods are inherently discrete.
curity turns out to be merely the state-price weighted sumMoreover, there are tendencies to apply game theory to
of its future payoffs. This idea can be traced back to Kethe theory of markets, supposing each market participant
neth Arrow’s invention of the general equilibrium mode?s & player with individual strategies and utilities. In gam
of security markets in 1953. theory [4], however, the moves made by the players only
So far, the theory covers three models which differ f@ke place on discrete time dates.
their settings with respect to the time evolution, the fi- The basic approach to the multiperiod model goes back
nite multiperiod model, the dicrete infinite-horizon sef® Kenneth Arrow in 1953, the final state-price implica-

ting, and the Black-Scholes model. They are related 4i@1S were first mentioned by S. Ross in 1978. The results
cording to the following graphic: for the infinite-horizon setting are based on consideration

of Darrel Duffie in his textbook [3].

discrete time continuous time

finite — 2 Whatis arbitrage?

time multiperiod Black-Scholes
horizon model model Arbitrage is “speculation” without risk. In its simplest

form in the theory of portfolio choice and asset pricing,

infinite | .. - it means taking simultaneous positions in different assets

time mﬁmte-horlzor so that one is guaranteed a riskless profit higher than the
horizon setting riskless return, such as given by bonds like the US Trea-

sury bills. If such profits exist, we say that there is an
The glamorous star among these theories surely is #rbitrage, or anarbitrage opportunity
Black-Scholes model. Introduced in 1973 with the option Consider a stock that is traded on both the New York
pricing formula by Fisher Black and Myrton Scholes, an8tock Exchange and the London Stock Exchange. Sup-
proved in the same year by Robert Merton to hold on mauese the stock price is $172 in New York afiDO0 in Lon-
kets without arbitrage, it developed to a general derieatidlon at a time when the exchange rate is $1.75 per pound.
pricing theory. Roughly, it says that the security markefs arbitrageur could simultanuously buy 100 shares in
are in equilibrium without arbitrage, and the market pricésew York and sell them in London to obtain a risk-free
evolve as continuous-time random processes superpgsedit of
by a “white noise,” a Brownian motion. As a great ad-

vantage, the mighty theoretical physics machinery called 100- (£100- 1.75%/£ — $172 = $300
“Feynman-Kac formula” can be applied. For details see )
13,7, 8]. in the absence of transaction costs, cf. [6].

However, so far the.re does not exist an extension t01gymologically, arbitrage derives from the French word foegula-
an infinite horizon setting. Although the Black-Scholetn, whose root is Latirarbitrare — to decide, to judge
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To anticipate the notation below, the arbitrage portfolio2. an underlying asset, e.g., a st&k

6 in the market
S— <SN\() 3. a call option on the underlying asset, with premium

C and a strike price&K, which expires next period.
(The call option gives its holder the right, but not the
obligation, to pay for the stock, with divident, after
the state is revealed.)

on

is given by8 = (—n, n), with n = 100 say, and the cor-
responding payoff® = 6-S = N(Ston — Svy) = $3n.
Henced? > 0, the portfolio yields “something for noth-

ing. The market is represented by the vector
New York London B(t)
S(t) = | S(t)
sell | Stock A o)

£100 To keep things simple we assume a world (at least that part
Stock A ($179 of it which influences the financial market) in which there
$172 | buy are only two statev_ andw, possible. They occur with
probabilityp_ andp., respectively. This means that=
(p—, p+) is a probability vector wherp_ + p; = 1. The
market price€o[S(T )] expectedt timet = 0 (“now”) for

the futuret = T, denoted by, then are given as

Figure 1:Arbitrage opportunity at exchange rate 1.75$/

In practice, of course, there are many arbitrage opportu- EAIS(T)] — (1+r&)[3(0) (1+1)B(0) p- 1
nities. This, however, does not reduce the general interest o[S(M)] = S _K)* S+K ] \ps) (1)
in arbitrage-free prices. In fact, they have enormous theo- (S-—K)" (S =K)

retical relevance, for the most important conclusions caq

cerning t_h_e evolution of _markets can only be made un numberx. Notice that the payoff of the bond is the same
the condition of non-arbitrage. . L
in each state of the world, because it is riskless. The stock

Arbltrage opportunities cannot last for Iong. As arbl—riCe S(T), however, may assume the valu@s or S,
trageurs in our example above buy the stock in New Yo .
epending on the states of the wodd.

the forces of supply and demand will cause the dollar_ ~_.".
price of the stock to rise. Similarly, as they sell the sto%iefmmg% = (1+r) and the vectog) = yiop, we see
in London, the sterling price of the stock will be driven 1
down. Very quickly, the two prices will become equiva- B(0) = m EolB(T)]. (2)
lent at the current exchange rate. 0

The very existence of arbitrageurs means that in prddusp(0) denotes the present value of the bond gnds
tice only very small arbitrage opportunities are observéte discounting factor for the perig@, T]. It is called the
in the prices that are quoted in financial markets. Aistate price deflator” at timé = 0. Furthermore(. =
bitrageurs are “information catalysators,” they make thigp+ are the “state prices” for each possible event. The
market prices a reflected image of the available informarbitrage theorem below will tell us that the financial mar-

eiraresi = S(T,wy), andx' := max(x,0) for any real

tion. ket is arbitrage-free if and only if
1
2.1 The concept of fair prices S(0) = m Eo[S(T)). 3)

The notion of arbitrage is used to obtain a practical deﬂ_th i 1 i i state . and
nition of a “fair price” or a “present value” for a financial e securitySpays 1 currency unit (cu) in s »an

asset. The price of a security figir, or the security is 0 cuiin stater,, thenS_ = tfi_: The investors are willing

correctly priced if there are no arbitrage opportunities atp pay g for an “insurance policy” that offers 1 cu in

those prices. Such arbitrage-free asset prices will be E\@tew and nothing in statev,.. Similarly, ... indicates

lized as benchmarks, deviations from which indicate o Q\II_V Tl:r?ht'nVEStfrs v_voutldt‘lil)ke todpa);r:‘_or an Lnfurance
portunities for excess profits. olicy“thatpays - cu in State, and nothing In state-..

Assume two discrete timds— 0 andt — T at which C€&rly, by spendinglo = ¢ + (» one can guarantee

trades can be made. Suppose moreover a financial ma}kgpit of account in the future, regardiess of which state
consisting solely of Is realized. This explains the interpretationysfas state

prices.
1. arisk-free bongB such as a Treasury Bill whose re- There are the following important utilizations of
turn until next period is %-r; arbitrage-free prices:



1. as benchmarks for determining market prices for nevhereE[X] denotes the expectation of a random variable
derivative products; X e L.

2. as benchmark prices for risk management “worst”’ €.g., the world C‘T ai((:hleve onkydiscrete state<)
case scenario” simulations: ={w, ...,ax}, thenL 2 R¥. We then cal also ak-fold

alternative

3. to “mark to market” the assets held in portfolios, i.e. An n-dimensionalstochastic process Xs a time-
to calculate the current market value of a non-liquidependent random variablelY. More accurately, a pro-
asset for which no trades have been observed latetgssX with time set7 and probability spacg,.#,P) is

. ) a family X = X(t,-)ic# € L of random variables
4. as benchmark prices to be compared with observed

actual trading prices; significant differences between N - n
observed and arbitrage-free values might indicate ex- X(t,): Q=R (te 7). ©)

cess profit opportunities. The image set is called configuration space. For details

see [5]§2. An n-dimensionakdapted proceséwith re-
3 Probabmty theoretic Setting spect tdF) is a familyX = {X(to), X(t1), X(t2), ...} such
that, for eacht, X(t) is ann-dimensional%-measurable

We investigate arbitrage and state prices in an abstract é&dom variable with respect (&, %, P). Informally
crete infinite-horizon setting. For details | refer to the ithis means: At time the statew and thus the vector
troduction [3], for an overview to the notions of probabilX(t, ) is known. We denote the set ofdimensional
ity theory see/[1, 2, 8]. adapted processes .

Suppos&? to be the set of thetates of the world.% Fors, t € .7 and an adapted proceds .7 x Q — R"
a o-algebra ofQ, andP a probability measur®: % — we let
[0,1], such thatQ,.7,P) is a probability space. E[X(5)] == E[X(5)|.7] (6)

Time will be represented by the varialile We will
suppose a discrete time model wheoaly obtains the (at denote the conditional expectationX(s) given the infor-
most countably many) valuég ti, ..., tj, tj11, .... We mation.%. We note thaE[X(s)] = X(s) (almost surely)
define7 = {to, ty, ...} as the time set. if s<t. (This is a consequence of the fact th&) is

For each daté € .7, we construct a subalgebt& C % -measurable for ang < t, see[2]§15, eq. (15.7).) If
7 of 7, such that théiltration F := { %, F1,, 7,, ...} X moreover is anartingale then by definitiorE; [X (s)] =
is afiltration. Hence at each time date.#; denotes the X(t) if s> t. For a martingale we thus have shortly
set ofmeasureable (“observable”) statest timet. Att
a measureable state ksownto be true or false. Thus X(s) ifs<t,
% assigns thenformation available at time t.Being a Ei[X(s)] = { X(t) ifs>t. ()
filtration, .%s C .% wheneves < t. That means an infinite
memory, such thapaststates are never forgotten. At thgn the sequel we will restrict ourselves to the ét of

starting timet = to there is no information, sB(A) =0 0r - mean-summable-dimensional adapted processes given
1 for every macrostat& in .7,. In this way the filtration b?;

IF represents the way how information is revealed throug 5

time. Zh= {XG"//nZE{ X (t)} <oo}. (8)
The measurable states i#; represent the questions te

that can be asked at tinte In a filtration the number of \ya will denote especially? — %;. By construction

askable questions permanently increases. The poterg{aény timet € 7 a procesX € % is in L". Because

knowledgeagets finer and flne_r as time passes by. E[S, [X(t)]] < ®, by Fubini's theorem we can reverse the
LetL b_e the space of_ possible ru;es foreach state of €y of the expectation and the time integElly, X (t)]

world, given by the Hilbert spe e -(Q,.#,P) of real- _ 5 E[X(t)], cf. [3] §C. Hence,%, C L2(.7 x Q,R").

valued square-integrable functions@n With the inner product:|-)n: % x % — R given by

L=L%Q,7,P) 4)
20 7 | | ) (XIY),=E| T X(®)-Y(1)]. (©)
whereL(Q,#,P) = {f: Q = R: [o|f(w)|* dP(w) < t&
o}. L then is a separable real Hilbert space. It has the
inner product|-): LxL — R, we see that7} is a Hilbert space. It is isomorphic to the
classical sequence spdee.%, 2 |, [10] §2.
(flg) :/ f(w)g(w)dP(w) = E[fg], What about the inner product/(9)? We note so far that
Q the square ok of a process is determined by all its future
2For a definition a Hilbert space, sée [10] expectations. What else are prices?



4 Arbitrage and state prices haved?(t) e L. For future purposes we note that

[

Financial markets. We define dinancial marketcon- %) = Z[G(n,l) —6(1)]S(t)

sisting ofn assets — such as options, futures, forwards, =] =1

stocks, or bonds — to be the paid,S) of two n- +29(t|71)5(t|)

dimensional adapted processes) € .%,. HereS(t) = =y

(Si(t), ..., Sa(t)), where fori = 1, ...,n eachS denotes o L e

thei-th security price processo thatS(t, w) is the price = 0(t-1)S(t) + lZ O(t)[St) - St-)]
of thei-th securityex dividendat timet and in statew. o -

Additionally, security number is a claim to adivident + > 0(ti-1)o(t)

4 (t, w) denoting the divident paid by the security at time 1= -

t in statew. (That is, at each timethe security pays its = 0(tj_1)S(t)) + Z 0(t)D(t).

dividentd (t) and is then available for trade at prigét).) =

We assume that thaivident processd = (01, ..., n) IS ) ] )

adaptedp € .%,. Hence for each timee .7 and state of Eipec:aally forio: 0 we have with6(t-1) = O that
the worldw € Q the vectors of asset pric&t, w) and of 200" (U) = 2o 0(t)D(h). i.e.

dividendsd are given by ° .
B[ Y o°w)| =8| Y owpw)] @5
Si(t, w) au(t, ) 1=+ 1571

Example 4.1 Let bes, T € .7. Consider the simple trad-
Shit,w) On(t, w) ing strategy of buying asset numhieat timet = s and
selling it at timeT, i.e. 6 (t) = 0 for| #i and for each €
The cum-dividentsecurity price is detemined I§(tj) + 7 as well ash (t)=1fort <T and@(t)=0fort<s
d(tj). Theadded market price process timet; is and fort > T. Then the payoff process? generated by

the trading strategy is given simply by
D(tj) = S(tj) +O(tj) — S(tj—1) (11)

—-S(s) ift=s
whereS(t_;) := 0, as well a®(tg) = 0. In other words we 69(t) = 6 (t) !f S<t<T (16)
haveD(tp) = S(to). In [3] the gain process @) is defined S(T) ift=T
as 0 else.

j j
G(t) = S(t)) + %5(&) = %D(tl)- (12) _
1= 1= State-price deflators. Let %, = {Y € Z: Y(t,w) =
0 V(t,w)} denote the cone of non-negative adapted pro-
) ) ) _ _ cesses inZ 3 The “interior” £ of the cone,
Trading strategies. A trading strategyis ann-dimen-
sional adapted procefsc .4, such that for any financial Ly ={YyeZ: Ytw)>0 Vitw} (17)
marketSthe producB - Sis an adapted proces$;Sc .. . ,
Here 8(t, ) = (B1(t,w), ..., B(t, w)) € R" represents is called the set ofleflators (“.%} \ 0.¢," — but what

theportfolio held after trading at timeand in statev. Let topology) Thus a deflator is a strictly positive one-

O C Zn denote the given set of possible trading strategiéj';lmens‘ionaI adapted process. A deflapds astate-price

Themarket value process&of the trading strategy is thedeflatorfor the divident-price paifé, S), if for all tj & 7
adapted process and every statev of the world,

* e[ 3 v ow].| as)

0\ — . j =t o)
VO(t) =0(t)-S). (13) S0 = T o) 15

By constructionV® € .. Thepayoff proces$? gener-

atedby the trading strateg§, fort; > to, is defined by Note that this is a vector-valued equation. With (15) we

see that a deflatap is a state-price deflator if and only if
for any trading strategy
6%(t)) = B(tj—1) - [S(t)) + 8(t)] = VO(t),| (14 -

VO 0) = g By Y ww)-stw)]. a9
with “6(t_1)” taken to be zero by convention. By con- b I=1+1
struction, for6 € © we have tha8® is a one-dimensional™ s coneis a subset of a linear space with the property that for every
adapted process® € .#. Especially, for each € .7 we y e Cand every positive constaitwe have als\ g € C.




This means roughly that the market vami@ = 8- Sofa Sincef is positive,i is a deflator.
trading strategy is, at any time, the state-price discalinte First, if a state-price deflator exists, equation (19) yseld
expected future payoffs generated by the strategy. f(6%) = Y(t_1)VO(t_1) = 0. So let us consider the “only
For a finite horizon setting] := {X € %, : X(t) =0 if"-direction. We haveE[zt W(t)8°(t)] = 0 for any trad-
fort > T} the right-hand side of (19) vanishes, and d0g strategyd, for ° € .#. Especially for thé-th secu-
S(T) = rity with i € {1, ..., n} the trading strategy in example
[4.1 we have WitHﬁ\G)

Arbitrage. For any strategie§, 68’ € © and scalars,
b € R, we havead? + bd? = 52999 Thus themar- E[‘P(T)S(T)Jr P(t)&(t) — Y(to)S(to)| =0.
keted subspace” = spar(d?: 6 € ©) of divident pro- fo<t<T
cesses generated by trading strate@eis a linear sub- . ., w
space of the Hilbert spac# of mean-summable adapted N€ “deflated gam process” of theh securityG/"(t) =
processess/ C .. Yt)St) + Zs>to Y(s)&(s) thus is a martingale, since
Given a divident-price pait3,S) for n securities, a E[G! ()] = @(to)Si(to), andt is arbitrary. This implies
trading strategyp is anarbitrageif 5° > 0. This means thatEG/(s)] = w(t)S(t) for anys>t. Because this is
P(5%(t) > 0) > O for at least one timé, andd®(t) > 0 Vvalidforanyi=1,....n, equation|(109) is satisfied, and
forallt € 7. Y is a state-price deflator. O
Geometrically the arbitrage condition means the fol-
lowing: Both the cone of non-negative processésand
the marketed subspace are closed convex subsets o6 Discussion
Z. Hence there is no arbitrage if and only4f, N .# =
The arbitrage theorem tells us two things:
(i) Evidently, in case of non-arbitrage tlexpectation
of future prices determines trectual market prices. In
other words, actual prices express future expectations.
(i) The actual market prices in turn determine the fu-
ture market expectations. (However, they do not yield the
precise probability distributions.)
In the discrete finite time setting/ = [0, T], (the “ba-
sic multiperiod model”) it can be shown that there exists
no arbitrage if and only if there is an “equivalent” mar-
tingale measure. Two probability measureandq are
Figure 2:The marketed subspace and the deflator congz,.  called equivalent ifp and g assign zero probabilities to
the same states or evenfgx) =0 < q(x), X< .%, see

[3] §2G.
{0}, see figure 2. In this way the deflator ca® may  This version of the arbitrage theorem builds the bridge
also be called the “cone of arbitrage.” to the continuous time setting, the “Black-Scholes mar-

ket”, where Brownian motion influences the market prices

Arbitrage Theorem. The financial marke(d,S) ad- as a white noise. With some mild and technical restric-

mits no arbitrage if and only if there is a state-price defldions there is no arbitrage in a Black-Scholes market, if

tor for (5, 9). and only if there exist an equivalent martingale measure.
Open questions that remain:

Proof. With the Separating Hyperplane Theorem [9], (i) How can the phenomenon of emerging and vanish-
for two closed convex subseté, and.# with #, n.« ng securities over an infinite time horizon can be tackled?
= {0} there exists a linear functiondt . — R with (ii) Is there a similar approach with a continuous time
f(Y) < f(X)forallY € . andX € £, X # 0. Since butinfinite horizon?
 is alinear space, this impli€g.#) = 0, andf (X) >0 (iif) What about discrete prices? For why should se-
for all nonzeroX € .%, . curity prices supposed to be continuous? Perhaps a per-
According to the Riesz representation theorem [g)anent discrete “jump” assumption is much more real-
§1.2, for each linear functionaf: . — R there exists istic and may lead to a deeper understanding of the na-
a unique vecto € ., called the Riesz representation dure of markets. In fact, real prices only achieve certain
f, such thatf (X) = (¢|X) forall X € .Z, i.e. discrete base points or “ticks:” Theye notcontinuous.
But how does the corresponding configuration space look
f(X)=E [ iw(n)xm )}7 VX € L. (20) like? Our setting above would not yield a Hilbert space
|= .
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